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Absarah The method of the fourth-order cumulant of energy is used together with the 
Monte Carlo histogram technique to study the order of phase transition of the two- 
dimensional Potts model with m-spin interactions in the horizontal direction and n-spin 
interactions in the vertical direction. 

1. Introduction 

The two-dimensional Potts model with multispin interactions we study in this paper 
was originally introduced by Turban [l] and then investigated by Alcaraz [Z]. The 
model is defined by the Hamiltonian [l, 21: 

where ks (k,) is the spatial (temporal) coupling. The first sum runs over the multiple 
links L, joining m successive spins in the spatial direction, the second one is over the 
multiple links L, joining n successive spins in the temporal direction. The Potts 
variable {U} lie on the sites of the rectangular lattice and may stay in any one of the 
q-states o=O, 1 , .  . . , (q-1). 6, is a Kronecker 6 function modulo q. The model is 
self-dual for any m and n and as long as it has a single transition the critical point will 
be located at the self-dual point which is given by the known relation K, = l n ( ~  + 1) 
for the isotropic case k,= k,. the main interest of this model lies in the change in the 
nature of the transition from second to first order as m and n are increased once q is 
fixed. Turban [l] predicted that the model has a first-order transition when m. n or q 
are large enough. So thereis a line in the (q, m) plane where the latent heat vanishes, 
separating first order from second-order regions. For q = 2, n = 2 and any m, finite size 
scaling [3] and Monte Carlo methods [2-41 showed that this line went through the 
point (q = 2, m = 3). Bl6te [5] has shown the equivalence between q = 2, m = 3, n = 2 
and q=4, m = n = 2  in the extreme anisotropic limit. However, this issue was not 
totally settled in a definite way for q = 3. The purpose of this paper is try to locate the 
borderline between second-order and first-order transition for the model when q = 3. 
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Because when m = n = 2 4 = 3, the transition is already known to be of second order 
[6], we will fix n = 2  and increase m to see for which m the transition becomes first 
order. Our result is that when m =  3 the model undergoes first-order transition which 
is in agreement with [2] by detecting quite clearly the energy differences between the 
two phases. 

The method we used to distinguish between first and second-order transition is the 
cumulant technique which was proposed by K Binder [7]. This method has been used 
recently to locate the boderline for this model when q = 2  [4]. 

Binder’s fourth-order cumulant of energy is defined by 

v4(q = 1 - (E4)A3(&%) 
and was introduced as a quantity which could distinguish between first and second- 
order transition since it has a non-trivial value at a first-order transition. In either a 
disordered or ordered phase, Tf T,, V4(L) = 8 in the thermodynamic limit but at T,, 
all phases contribute to V4(L), so it will have a minimum value which in the 
thermodynamic limit is given by [S-101 

V4(L)Ien=2/3 - (eL/ez- e,/e,)2/12 

where e, and e2 are the energy of the two phases at the transition temperature, while at 
a second-order phase transition it tends to in the thermodynamic limit for any 
temperature at and around the transition. 

We employed the standard single-spin-flip Metropolis [U] Monte Carlo algorithm 
and study system with dimension L x L and periodic boundary conditions applied in 
all directions. We performed the simulations at the self-dual symmetrical point for the 
isotropic case K, = KY= K,. 

In order to locate the position and value of the minimum of the fourth-order 
cumulant quickly and accurately, we used the histogram method of Ferrenberg and 
Swendsen [12] for calculating the probability distribution of the internal energy at 
values of the coupling shifted from that of the actual value used in the simulation. 
Once in possession of the histogram the average of and (E4) ,  of sue L can be 
calculated easily. So the fourth-order cumulant of energy can be calculated easily. 

With their method, it is possible to obtain complete thermodynamic information 
over the entire scaling region near the phase transition from a simulation at a single 
value of coupling in the region, and thereby, to accurately locate the positions and 
values of Binder’s fourth-order cumulant. 

Typical runs were (5.O-7.0)x1O5 Monte Carlo steps per spin (MCS). 
Thermalization was assumed after looking at the correlation times, which led to 
discarding the initial (1-5) x lo4 MCS. All the simulations were performed on Taijing 
2230 at the Computer Center of SuZhou University. One of our largest series of 
measurements on a 48 X 48 lattice, MCS = 600 000, took about 60 h of CPU time. 

The temperature variation of V4(L) is shown for various lattice sizes in figure 1. As 
the lattice size increases, the positions of the minima of the fourth-order cumulant 
shift to the lower temperature direction and the values of the cumulant increase. 
These values of the minima were fitted using a power law as suggested by finite size 
scaling of the form [S, 91 

VL= Vm(l - aL-b). 

The best value obtained for V, characterizes the order of the transition to be of 
first-order when m=3, n = 2  for q=3, because V,=O.655#$. The value of b and a 
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Figure 1. Temperature variation of V4(L) for various lattice sizes. The transition tempera- 
ture and the trivial (+) and non-trivial (0.655) limits for V4(L)ldn are indicated. Data for 
some of the lattice sizes have been omitted in order IO preserve the clarity of the figure. 

obtained by our fitting procedure is 1.98 and 7.035, respectively. 
The transition temperature can also been obtained by studying the size depen- 

dence of the positions of minima of V,(L). These values of the pseudocritical 
temperature were also fitted using a power law as suggested by finite size scaling of the 
form [8, 91 

T =  T,(l-a’L-b’). 

The best value of T ,  obtained by our least square subroutine is 0.9955 yhich is 
very close to the exact value 0.9949 [l, 21. The a’ and b‘ obtained is -2.8 and 1.99. 

In conclusion we have used the cumulant method in association with the Monte 
Carlo histogram technique to study the order of phase transition of the two- 
dimensional Potts model with multispin interaction. Our conclusion is that for q = 3 
the model will change from a second-order transition (m = 2, n = 2) to a first-order 
transition (m = 3, n = 2). 
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